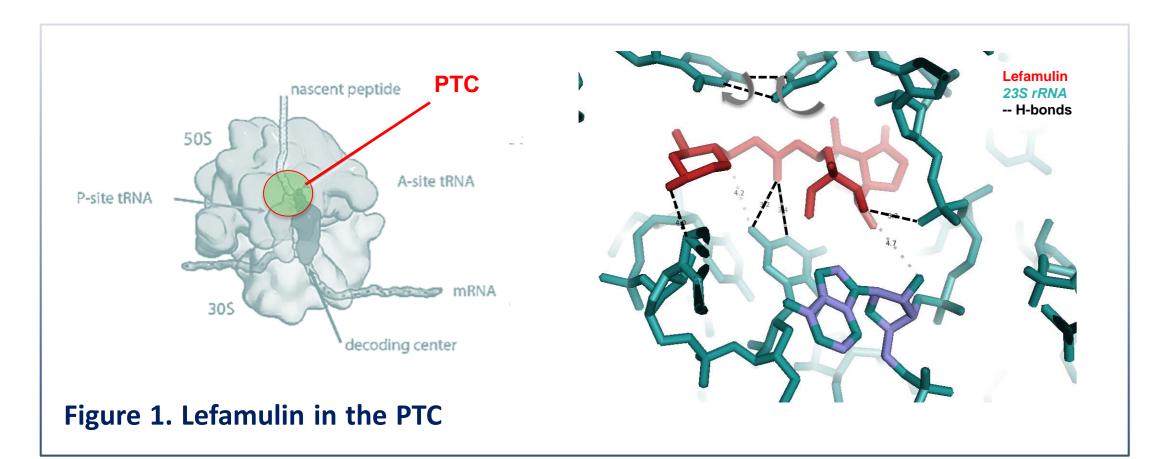


In Vitro Activity of Lefamulin against Bacterial Pathogens Commonly Causing Community-Acquired **Bacterial Pneumonia (CAP): 2015 SENTRY Data from Europe**


Paukner, Susanne¹; Sader, Helio S.²; Streit, Jennifer²; Flamm, Robert K.²; Gelone, Steven P.¹; ¹, Nabriva Therapeutics AG, Vienna, Austria; ², JMI Laboratories, North Liberty, IA, USA

INTRODUCTION & PURPOSE

Background: Lefamulin is the first semi-synthetic pleuromutilin antibiotic for IV and oral use in humans. It is currently in Phase 3 trials for the treatment of CAP in adults. Lefamulin effectively and selectively inhibits bacterial translation by binding to the peptidyl transferase center (PTC) at two sites. It interacts via four H-bonds and other interactions resulting in an "induced fit" whereby nucleotides in the PTC shift and further tighten the binding pocket around lefamulin (Figure 1).^{1,2}

Lefamulin has demonstrated potent *in vitro* activity against a variety of pathogens that cause skin and soft tissue infections and respiratory tract infections caused by Gram positive, fastidious Gram-negative, and atypical bacteria including Mycoplasma pneumoniae, Chlamydophila pneumoniae and Legionella *pneumophila*.^{3,4} Lefamulin showed similar efficacy to IV vancomycin in a clinical Phase 2 trial in patients with acute bacterial skin and skin structure infections.⁵ Furthermore, lefamulin has been well tolerated in phase 1 and phase 2 trials.

CAP is the number one infectious diseases cause of death worldwide and emerging resistance complicates its treatment.⁶ This study investigated the activity of lefamulin and comparators against a contemporary set of bacterial respiratory pathogens collected in Europe.

METHODS

Unique patients' isolates (n=1040) were collected in Europe (19 countries, 36 sites) from patients with respiratory tract infections (87.5%), blood stream infections (8.4%) and other infections (4.1%). Only one isolate per patient infection episode was included in surveillance.

Lefamulin and comparators were tested by CLSI broth microdilution methods and susceptibility was determined using the EUCAST (2017) breakpoints.^{7,8} QC reference organisms were tested concurrently for lefamulin and comparator agents.

RESULTS

- Lefamulin displayed potent antibacterial activity against this collection of respiratory pathogens with all 1040 isolates inhibited at concentrations of $\leq 2 \text{ mg/L}$ (Table 1).
- Lefamulin was the most active compound against S. pneumoniae (MIC_{50/90} of 0.06/0.12 mg/L) with only 3 isolates inhibited by a lefamulin concentration of $\geq 0.5 \,\mu g/mL$
- S. pneumoniae isolates were susceptible to levofloxacin (98.6%), whereas 27.6%, 24.6% and 13.2% of isolates were resistant to macrolides, tetracycline, and ceftriaxone, respectively.

Table 1. Susceptibility of CABP pathogens against lefamulin and comparators

rganism (N)	MIC ₅₀	MIC ₉₀	MIC ₉₉	Range	% Susceptible ^a	% Intermediate ^a	% Resistant ^a
pneumoniae (710)							
Lefamulin	0.06	0.12	0.25	≤0.008 to 1			
Amoxicillin-clavulanic acid	≤0.03	2	>4	≤0.03 to >4			
Azithromycin	0.06	>4	>4	≤0.03 to >4	72.1	0.3	<u>27.6</u>
Ceftaroline	≤0.008	0.12	0.25	≤0.008 to 0.25	100.0		0.0
Ceftriaxone	0.03	1	2	≤0.015 to >2	86.8	12.5	0.7
Clindamycin	≤0.12	>1	>1	≤0.12 to >1	81.0		<u>19.0</u>
Erythromycin	0.03	>2	>2	≤0.015 to >2	72.3	0.1	<u>27.6</u>
Imipenem	≤0.015	0.25	0.5	≤0.015 to 0.5	100.0		0.0
Levofloxacin	1	1	>4	≤0.12 to >4	98.6		1.4
Penicillin	≤0.06	2	4	≤0.06 to 8	68.6	27.3	4.1 ^b
Tetracycline	0.25	>4	>4	≤0.12 to >4	74.8	0.6	<u>24.6</u>
influenzae (170)							
Lefamulin	0.5	1	2	≤0.12 to 2			
Amoxicillin-clavulanic acid	0.5	2	4	≤0.12 to 8	97.6		2.4
Ampicillin	0.25	8	>8	0.12 to >8	84.7		<u>15.3</u> د
Azithromycin	0.5	1	2	0.12 to 2	1.2	98.8	0.0
Ceftriaxone	≤0.015	≤0.015	0.06	≤0.015 to 0.06	100.0		0.0
Clarithromycin	4	8	16	1 to 16	2.4	97.6	0.0
evofloxacin	≤0.015	≤0.015	0.5	≤0.015 to 0.5	98.2		1.8
Tetracycline	0.5	0.5	0.5	≤0.12 to >16	99.4	0.0	0.6
Trimethoprim- sulfamethoxazole	0.06	>4	>4	≤0.03 to >4	74.7	2.9	<u>22.4</u>
catarrhalis (160)							
Lefamulin	0.06	0.12	0.12	≤0.008 to 0.12			
Amoxicillin-clavulanic acid	0.12	0.25	0.25	≤0.03 to 0.25	100.0		0.0
Azithromycin	0.015	0.03	0.06	0.002 to 0.06	100.0	0.0	0.0
Ceftriaxone	0.25	0.5	0.5	≤0.015 to 1	100.0	0.0	0.0
Erythromycin	0.12	0.12	0.5	≤0.015 to 1	98.8	0.6	0.6
Levofloxacin	0.03	0.06	0.06	≤0.015 to 0.5	100.0		0.0
Tetracycline	0.12	0.25	0.5	≤0.03 to 0.5	100.0	0.0	0.0

, Criteria as published by EUCAST [2017]

^b, Non-meningitis breakpoints applied for penicillin

^c, ß-lactamase positive, reported as resistant for penicillins without inhibitors

27th European Congress of Clinical Microbiology and Infectious Diseases, Vienna, Austria, 22-25 April 2017

- - MIC_{50/90} of lefamulin against penicillin non-susceptible *S. pneumoniae* (*n*=223, non-meningitis breakpoint of >0.06 μ g/mL) were 0.06/0.12 μ g/mL

 - 100% of *S. pneumoniae* resistant to penicillin (n=29, breakpoint >2 μ g/mL) were inhibited by lefamulin concentrations of $\leq 0.12 \,\mu g/mL$;

CONCLUSIONS

RESULTS (con't)

Lefamulin's activity was not affected by resistance to other antibiotic classes.

PRSP showed high resistance rates to macrolides (93.1%), tetracycline (89.7%), amoxicillinclavulanic acid (62.1%) and trimethoprim-sulfamethoxazole (96.6%) whereas PRSP were largely susceptible to levofloxacin (82.8%), tigecycline (100%) and vancomycin (100%).

• 98.5% of macrolide-resistant *S. pneumoniae* (n=196) were inhibited by $\leq 0.25 \mu g/mL$ lefamulin $(MIC_{50/90} 0.06/0.12 \ \mu g/mL, range 0.008-1 \ \mu g/mL)$

Against the fastidious respiratory pathogens, lefamulin showed potent activity and was not affected by ß-lactamase production.

• *H. influenzae*, MIC_{50/90} of 0.5/1 mg/L, including 12.9% of ß-lactamase producing strains

M. catarrhalis, MIC_{50/90} of 0.06/0.12 mg/L

Lefamulin demonstrated potent in vitro activity against a contemporary collection of respiratory pathogens from Europe.

Lefamulin was active regardless of resistance phenotype to the other antibiotic classes including macrolides, ß-lactams, tetracyclines or fluoroquinolones.

The lefamulin activity against this contemporary collection is consistent with results obtained from previous studies including a variety of *S. pneumoniae* serotypes.⁹

These data support the continued clinical development of lefamulin for the treatment of respiratory tract infections, including CAP.

REFERENCES

(1) Eyal, Z., et al., *Sci Rep* 6, 39004 (2016) Laboratory Perspectives, Antibiotics and Antibiotic (7) CLSI, M100(2017) *Resistance* (2016)

(3) Paukner, et al. AAC 57(9), 4489-4495 (2013) (4) Waites, K. B., et al. AAC 61(2)(2017)

- (5) Prince, W. T, et al. AAC 57(5), 2087-2094 (2013)
- (2) Paukner, S. and Riedl, R. Cold Spring Harbor (6) Prina, E., et al. Lancet 386(9998), 1097-1108 (2015)

 - (8) EUCAST. Breakpoint tables for interpretation of MICs and zone diameters V. 7.0 (2017)
 - (9) Mendes, R. E., et al. AAC 60(7), 4407-4411 (2016)